
FUNDAMENTAL THEOREM OF ALGEBRA

DANIEL COBLE

1. Introduction

The fundamental theorem of algebra, which states that every nonconstant polynomial
has a root, has posed an annoying pedagogical problem. Although the result is easy enough
to teach to high schoolers, any proof is waived off. Even in college math classes, professors
dismiss the idea of a proof, and often claim that because of its ‘fundamentalness’, the proof
requires analytical techniques. That is roughly true, but it is certainly not true that a proof
requires complex analysis. Finally, when a proof is given, they often end lamely with a
contradiction, not giving any hint as to the construction of a root.

The purpose of this document is to describe a proof of the fundamental theorem of algebra
inspired by the proof given in Munkres’s Topology. Being two dimensional, I represent the
argument primarily through diagrams. All results from topology are intuitive and can be
expressed layly. Still, I try to give the necessary terminology so that a reader could fill in a
precise proof.

2. Fundamental theorem of algebra

Definition 2.1. A path in the complex plane is a continous function f : [0, 1] → C. If
f(0) = f(1) then f is also a loop.

Definition 2.2. Two paths f and g are homotopic (topologically equivalent) if there is
some function H : [0, 1]2− > C. Such that

H(0, t) = f(t) and H(1, t) = g(t) (2.3)

Intuitively, two paths are homotopic if one can be continuously deformed to another.

Lemma 2.4 (From Topology (Winding Number)). Take the space C − {a}, or the entire
complex plane minus the point a. If f and g loops, with f homotopic to a + e2πmt and g

Figure 1. (left) a path and (right) a loop.
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homotopic to a+e2πnt, f and g are homotopic if and only if m = n. In other words, if loops
are homotopic if they take the same number of trips around a.

All lemma 2.4 says is that any loop is described by the amount of times it turns around
a point. Any deformation preserves the number of turns, unless that deformation takes the
loop through the point a. I think this is something anyone would expect. This lemma (and
the obvious fact that a path is homotopic to itself) are the only things we need for this
proof.

Figure 2. A deformation of a loop. a is originally contained within the
interior of the loop. In order to reach the exterior, there must be some
point along the deformation where a is on the loop.

Proof of the fundamental theorem of algebra. Let a polynomial be given by

p(z) = zn + an−1z
n−1 + ...+ a1z − a0 (2.5)

and we need to assert that there is some z0 such that p(z0) = 0. For simplicity we will
take q(z) = p(z) + a0, and we will search for where q(z0) = a0. We’ll consider z in polar
coordinates, z = reiθ. Then,

q(z) = rneinθ + an−1r
n−1ei(n−1)θ + ...+ a1re

iθ (2.6)

If we take r fixed and vary θ between 0 and 2π, q(z) describes epicyclic movement. But the
first term dominates, so that if we take r0 large enough, q(r0e

iθ) moves exclusively counter
clockwise in the complex plane. Our picture looks as follows:
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And we can assume that a0 is within the interior of q(r0e
iθ) by saying |a0| < min

0≤θ<2π
|q(r0eiθ)|.

Let’s consider a path from 0 to a point on q(r0e
iθ) taken now by keeping θ fixed but varying

r between 0 and r0.

fθ(t) = q(tr0e
iθ) (2.7)

Already, the reasoning is obvious. As we vary θ, fθ moves counterclockwise with the
outer end along q(r0e

iθ). After θ = 2π f2π=f0, and at somewhere along the way f must
have crossed a0.
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Figure 3. The path fθ(t) moving through different θ values. In the middle
figure, a0 is achieved for some value of t.

Let’s make this more formal. Let’s define a path gθ which first follows fθ, then travels
back along q(r0e

iθ) until θ = 0, then returns to 0 along a straight path.

gθ(t) =


q(3tr0t

iθ) 0 ≤ t ≤ 1
3

q(r0t
iθ(2−3t)) 1

3 < t ≤ 2
3

q(r0(3− 3t)) 2
3 < t ≤ 1

(2.8)

We consider homotopies on the space C − {a0} and ask which paths gθ are homotopic to
g0. Specifically, is it possible that g2π is homotopic to g0? Assume (for contradiction) that
q(z) does not ever equal a0. Then Any two gθ1 , gθ2 are homotopic through the following
homotopy.

Hθ1,θ2(s, t) =


q(3tr0e

i(θ1(1−s)+θ2(s))) 0 ≤ t ≤ 1
3

q(r0t
i(θ1(1−s)+θ2(s))(2−3t)) 1

3 < t ≤ 2
3

q(r0(3− 3t)) 2
3 < t ≤ 1

= g(θ1(1−s)+θ2(s)(t) (2.9)

Which has Hθ1,θ2(0, t) = gθ1(t) and Hθ1,θ2(1, t) = gθ2(t). Because q(z) never equals a0, we
don’t have to worry whether the first or third sections intersect a0.
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Figure 4. Three gθ for different values of θ. The homotopy Hθ1,θ2 moves
through all gθ for θ between θ1 and θ2

By this homotopy, we have that g0 is homotopic to g2π. Is that reasonable? The first
and third sections of g0 and g2π are identical, but the second section of g0 is stationary
whereas the second section of g2π circles a0 n times. In the below picture I have that g0
doesn’t encircle a0. That may not be the case, but regardless, if g0 encircles a0 k times, g2π
encircles a0 k + n times. Thus we reach the contradiction.

Figure 5. (left) g0 and (right) g2π. The two loops do not encircle a0 the
same number of times.



6 DANIEL COBLE

Another (slightly more constructive) method of proof could say that between 0 and θ⋆,
gθ does not achieve a0. Then we show that as θ⋆ approaches 2π, gθ between 2π and θ⋆ must
achieve a0. □


